

Unraveling your genealogy with

Genetic Affairs

Evert-Jan Blom PhD

Outline of presentation

- AutoCluster grouping your matches
- AutoSegment finding common DNA segments
- AutoTree mining trees for common ancestors
- AutoKinship create trees based on shared DNA
- AutoKinship on GEDmatch

Outline AutoCluster

- Why clustering?
- How does AutoCluster work
- AutoCluster visualization
- AutoCluster concepts
- Ordering of clusters
- Start a clustering
 - FTDNA, 23andme & Ancestry
 - MyHeritage & GEDmatch
- Conclusion

- Break up your DNA match list into groups
- 4 groups that represent your great-gp
- 8 groups that represent your 2g-gp

- Provides hypotheses:
- Members of clusters are likely to share the same common ancestor and represent a branch of your family.
- Analyzing clusters:
 - Interpret trees of matches from a cluster
 - Identify one or more ancestors in common
 - Common surnames/locations
 - Contact matches, build Q&D trees
 - Find shared segments

How does it work?

• Organize unorganized lists to groups of related matches

2• Take your match list

6

7

8

- For each match:
- Take the shared (or "in common with") matches and connect linked matches
- Create a (genetic) network
- Identify groups (clusters) of linked matches within the network

AutoCluster visualization

petite dilibertiality stadio and interaction with a state of a star for the state of the state of the bar of the

- AutoCluster automatically organizes your matches into shared match clusters .
- Provides a visual chart of your clusters.
- The chart starts out unsorted and organizes itself into the colored clusters

AutoCluster

Genetic Affairs or: Marilyn Monroe · AncestryDNA: Marilyn Monroe · June 12 2019 by Evert-Jan Blom Order DNA Matches by: Cluster V Mayra Mendoloja Elle Hena Ionia Pampin Joseffie Masadan Malche Masadan Malche Masadan Malche Masadan Malche Malan Carele Bannan Carele Banno Marte Banno Mayra Mendiola Elke Hegna Vania Pamplin Josefine Masden Cluster 1: 11 members Cluster 2: 7 members Cluster 3: 9 members Cluster 4: 4 members

- Top section contains information concerning the analysis
 - Person tested
 - DNA testing company
 - Date of analysis
- Order DNA matches
- Cluster information

AutoCluster concepts

- your DNA matches on X and Y-axis
- You match Vania Pamplin & Elke Hegna
- Vania Pamplin & Elke Hegna also match!
- You also match Theo Willaims
- Vania Pamplin does not match Theo Willaims

AutoCluster grey cells

- Grey cells can link clusters
- Indicate a relationship between clusters
- Elke Hegna could be a high cM match linking two more distant common ancestors
- Elke is a member of cluster 1 because she matches the most matches
- E.g., Elke Hegna is a maternal 2nd cousin
 - Orange cluster MMP
 - Green cluster MMM

AutoCluster empty cells

Mendola egna Panplin te Masa	^{ucen} ^{ucen} ^e Rutten ^a Bannarot ^b Bannarot ^b Bannarot ^b Buckes ^b bb ^b bbb ^b bbb ^b bb ^b bbb ^b bbb ^b bbb ^b bbbb ^b bbbb ^b bbbbbb						
Mayra Elke L Vanja Josefi	Malon Malon Carlei Theo Theo Deent Fredrin Krystill Krystill						
Mayra Mendiola							
Elke Hegna							
Vania Pamplin							
Genealogical Relationship	Probability of No Detectable DNA Relationship						
1st cousin	0.00%						
1st cousin once removed	0.00%						
1st cousin twice removed	0.00%						
2nd cousin	0.00%						
2nd cousin once removed	0.10%						
2nd cousin twice removed	2.30%						
3rd cousin	2.30%						
3rd cousin once removed	12.10%						
3rd cousin twice removed	30.70%						
4th cousin	30.70%						
4th cousin once removed	52.00%						
4th cousin twice removed	69.80%						
5th cousin	69.80%						

https://isogg.org/wiki/Cousin_statistics

- Vania does not match 4 matches in the cluster
- Based on chance, you sometimes do not match with a genealogical match
- 31% chance no DNA with 4C
- Shared cM threshold could be too high
 - On Ancestry, default is 20 cM

Ordering of clusters

- Initial sorting of clusters was based on cluster size
- More intuitive sorting; based on interactions between clusters
- Link cluster 5 with cluster 1
- Link cluster 4 with cluster 2

- Connected clusters often in concordance with ancestry tree
- High cM matches can be used to "link" clusters together

Ordering of clusters

- Connected clusters often in concordance with ancestry tree
- High cM matches can be used to "link" clusters together
- A group of clusters that are closely related to each other => supercluster

AutoCluster table

AutoCluster Cluster Information

	Name 🔶	c ≜	# 🛋	Cluster 🔺	Tree 🔺	Predicted rel	Groups 🔺	Notes preview
	Search	Μ	Ma:	Search f		Search	Search	Search
▶ Clus	ster 1 (58 items)							
Clus	ster 2 (53 items)							
👻 Clus	ster 3 (4 items)							
0	Ericka Tomei	46.8	13	3	(5)	fourth cousin	1, 3	Reece?
0	Emery Leet	43	16	3	-	fourth cousin	1	
0	Twanna Wainright	43	18	3	12	fourth cousin	1, 3	Reece
0	Mavis Dipaolo	41.9	10	3	-	fourth cousin	1	
- Clus	ster 4 (12 items)							
0	Lynne Reves	59.2	39	4	141	fourth cousin	1	
0	Mauro Cupps	57.8	13	4	-	fourth cousin	1	
0	Despina Laboy	57.6	13	4		fourth cousin	1, 3	Reece
0	Vinita Foor	57.2	18	4	-	fourth cousin	1, 3	Reece?
0	Esther Junious	56.3	13	4	171	fourth cousin	1	
0	Laurena Gulley	46.5	13	4	-	fourth cousin	1, 3	Reece? Smart?
0	Rubi Egli	46	16	4		fourth cousin	1, 3	Gill, Reece??
0	Britteny Gersten	45.4	11	4	-	fourth cousin	1	

- Matches per cluster available in table underneath chart
- Link to DNA match, shared cM and notes

- Genetic Affairs members page: https://members.geneticaffairs.com/
- Free registration and 200 credits
- Shows registered websites
- Register new websites (23andme/FTDNA)
- Start analyses

- Register FTDNA or 23andme account
- Select registered FTDNA/23andme account
- Select profile of interest
- Set parameters:
 - max & min cM (e.g., between 400 -50 cM)
 - lower cM limit = more matches/clusters
 - min shared segment size
 - For 23andme: min shared DNA between matches
- Start analysis

23andme shared DNA

- 23andme displays "shared DNA" for relatives in common
- Click on the "Yes" : segments in chromosome browser with overlap
- Helix symbols represent these overlapping (and triangulated) segments
- Possible to run clustering only using overlapping segments (AutoSegment)

Shared DNA: 5 vs 10 cM

AutoCluster for Ancestry

matches

	name	cM	notes		
À	A	B	С		
1	Laila Maynard	180,1	related to Maynard line		
2	Alima Gonzalez	44,3			
3	Laaibah Tomlinson	87,1	paternal		
4	Javier Shaw	100,5	maternal		
5					
6					
7					

Other AutoCluster analyses **Run AutoCluster using CSV files Run online AutoFastCluster** H CSV Run an AutoCluster analysis using spreadsheet files Run an AutoCluster analysis using an online spreadsheet containing matches and shared matches and get results in seconds **Recluster MyHeritage AutoClusters Transform AutoCluster HTML** Y Recluster your old AutoCluster or MyHeritage analysis Transforms your old AutoCluster HTML files to an Excel file, enabling you to manually add matches and run the CSV clustering Select shared matches AutoCluster name AutoCluster AutoCluste matches analysis with matches analysis with matches which share which share a max of less than Bestand kiezen Geen bestand gekoze Bestand kiezen Geen bestand gekozer 250 cN ~ 50 cM

shared matches

1	A	В	С	
1	Laila Maynard	Waleed Bishop		
2	Laila Maynard	Laaibah Tomlinson		
3	Laila Maynard	Javier Shaw		
4	Laila Maynard	Ebonie Cleveland		
5	Alima Gonzalez	Waleed Bishop		
6	Laaibah Tomlinson	Eliott King		
7	Laaibah Tomlinson	Hattie Hackett		
8	Laaibah Tomlinson	Javier Shaw		
9	Laaibah Tomlinson	Ebonie Cleveland		
10	Laaibah Tomlinson	Waleed Bishop		
11	Javier Shaw	Laaibah Tomlinson		
1127		1000 BOAR		

- Manually obtain matches & shared matches
- Using a spreadsheet, save 2 CSV files
- DNA matches : 3 columns
 - name, cM & notes
- shared matches: 2 columns
 - match, shared match
- Run AutoCluster using CSV files

- Results are emailed (with attachment)
- or
- Download analysis from our site
- Save ZIP file to local drive
- Unzip ZIP file and open HTML

AutoCluster on MyHeritage

Introducing AutoClusters for DNA Matches

- Implementation of AutoCluster algorithm running at MyHeritage
- Special initial analysis:
 - For top 500 matches (max 400 cM)
 - Test many cM ranges (min max) as well as shared cM between matches
 - Take clustering result with around 100 matches
- Increased shared cM improves clusters for endogamous populations

AutoCluster for GEDmatch

GEDmatch[®] Auto-Clustering

Here is a link to a useful YouTube video on using the Tier 1 Clustering tool.

Reference Kit: M020545 (DD EJ Blom) 409 Kits 155 Clusters Lower cM threshold= 15 Upper cM threshold= 1200

The AutoCluster feature on GEDmatch® was developed in collaboration with Evert-Jan Blom from Genetic Affairs

2019-10-23

- Integration for Tier 1 users
- Interactive chart

• Ability to employ the Multi-Kit-Analysis for downstream analyses

Conclusion AutoCluster

- AutoCluster groups DNA matches that likely share a common ancestor
- Clustering can be performed automatically for:
 - FamilyTreeDNA
 - 23andme
- Using CSV files for Ancestry/LivingDNA

On GEDmatch for tier 1 users

Outline AutoSegment

- Clustering using segments
- AutoCluster ICW clusters
- Example
- ICW vs shared segments
- Concepts
- Visualization
- Caveats
- Start AutoSegment
 - FTDNA, 23andme & GEDmatch
 - Hybrid AutoSegment
- Conclusion

- AutoSegment automatically organizes your matches into clusters based on overlapping segments or triangulating segments.
- Works for MyHeritage, 23andme, FTDNA and GEDmatch segments
- **DISCLAIMER:** in some scenarios it requires follow up analyses

Clustering using segments

- Members of clusters with the same segment share a common ancestor and represent a branch of your family.
- Analyzing clusters:
 - Interpret trees of matches from a cluster
 - Contact matches, build Q&D trees
 - Painting of DNA segments to help classify future DNA matches

Clustering using segments

Chromosome segments from DNA matches in clusters

A chromosome browser allows user to perform a graphical comparison between one or more matches to see how much DNA the user shares in common with them. Before we visualize the shared DNA segments we perform a clustering to group segments that are overlapping (min 5 cM). Next, these segment clusters are visualized using a certain color. In addition to the graphical representation a table is available that contains the detailed information for the segment clusters. Segments for the DNA matches for each AutoCluster cluster are available and can be accessed using the table underneath the chromosome browser. This table contains a link to the detailed chromosome browser, the number of multiple segment clusters, number of single segment clusters and number of clusters that are on the X chromosome.

In addition, it is now possible to generate a chromosome map from your clusters of DNA matches into <u>DNA painter</u> using the <u>cluster auto painter</u> tool. Importing the chromosome map from your clusters of DNA matches into DNA painter allows you to:

- Make notes and identify clusters as maternal or paternal
- Look at the segments behind the clusters and identify potential <u>pile-up</u> regions.

- Segment data can be imported into DNA Painter
- Cluster Auto Painter
- Generate a chromosome map from your clusters of DNA matches
- Provide hypotheses for future matches
- See <u>https://www.dnapainter.com/tools/cap</u>

AutoCluster clustering

- Output from a "regular" AutoCluster clustering
- Based on shared matches In Common With
- Red FTDNA cluster all matches are shared between each other
 - Check shared segments for matches from red cluster using FTDNA chromosome browser

AutoCluster ICW clusters

- Shared segments from the members of the red cluster
- Only some matches have overlapping segments (on chr 7 and chr 19)
- AutoSegment will only identify these overlapping segments

AutoSegment example

• MyHeritage segment and match data

Settings used for this AutoSegment analysis

Based on the provided cM thresholds (600.0 - 18.0), a total number of 1028 DNA matches was obtainedFrom the supplied CSV file(s), a total number of 6508 matches were retrieved. After applying the cM settings (min 18.0 cM, max 600.0 cM), we removed a total of 5480 matches and continued the clustering analysis using 1028 DNA matches. A total of 14 rules (14 rules that exclude segments, excluding thereby 84 segments) were employed. Based on these 1028 DNA matches we were able to retrieve 2551 DNA segments (after filtering using a minimum segment size of 18cM, a total of 206 segments remained). Interestingly, we weren't able to retrieve segment data from the provided segment data file for the following 12 matches:

A total of 150 segment overlapping segment pairs were found (using the min cM overlap of 18 cM) whereas 16084 segment combination did not overlap and were therefore not used for the clustering analysis. Based on the 150 overlapping segment combinations a total of 25 segment clusters resulted from the segment clustering.

Note: The following 37 matches met the inclusion parameters but were placed in an cluster that contains an amount of matches that is lower than the min cluster size of 4 matches and are therefore not included

Let's analyze the third red cluster

Chromosome browser

- Single well-defined segment on chr 13
- Segment table shows 6 matches with this segment & good overlap between segments

Cluster A	Segment 🔺	C 🔺	Start A	Stop 🔺	Segment representation	SNP c 🔺	Name 🔺 Segment clu	CM A	To
)								
3	31	13	29732994	41948151		7424		19.1	32.5
3	31	13	29732994	42438349		7680		19.6	27.2
3	31	13	30079484	42696870		7552		18.6	26.2
3	31	13	29732994	42438349		7680		19.6	26.2
3	31	13	29732994	42438349		7680		19.6	19.6
3	31	13	29732994	42438349		7680		19.6	19.6

- Use MyHeritage chromosome browser to check if they are on the same side
- Segments triangulate!

ICW vs shared segments

- Example of MyHeritage AutoCluster (ICW) vs AutoSegment result.
- AutoCluster DNA matches in a cluster do **not** always share the same segment
- AutoSegment DNA matches in a cluster based on local segment files (can) share one or more segment(s)

AutoSegment concepts

1 Import matches

2

Import segments

- User defines the cM range and the min segment overlap (e.g., matches between 400 cM – 20 cM and segments with at least 10 cM overlap)
- Discard matches outside range
- Discard segments smaller than min segment overlap

 calculate cM of the overlap of two segments based on human genetic map (build37)

AutoSegment main chart

- Fully connected clusters usually represent a single shared segment
- Not fully connected clusters usually represent multiple shared segments
Excel representation

DTC	Name	Hd	DTC	Cluster Match name	Total cM S	eg l	Chr	Start Location E	nd Location	Centimorgans	SNPs S	egment Cluster ID TG Side DNA N	Aatch ID
ETDNA	"	sc	SC.	SC SC	3	1	3	8.7	a cocation	centinorgans	80		in the second
FTDNA		50	FT	43	41	1	1	3	75	11.3	1686	89 014 155	
FTDNA			FT	43	69	1	1	3	87	12.9	1312	89 8 014 37	
FTDNA		-	FT	43	51	1	1	3.8	7.2	7.9	1296	89 01A 359	
FTDNA		SC	SC	SC	3	1	72	20.9	7.2	115	58	018	
FTDNA			FT	42	36	1	1	14.6	18.9	9.4	1376	58 018 1025	
FTDNA			FT	42	37	1	1	14.6	18.9	9.4	1376	58 0 018 957	
FTDNA		-	FT	42	67	1	1	7.2	20.9	26.5	4158	58 018 13	
FTDNA		sc	sc	SC	4	1	14.1	20.8	2015	2010	4150	018	
FTDNA		50	FT	30	46	1	1	14.6	20.8	12.4	2076	44 M 018 52	
FTDNA			FT	2	40	2	1	14.0	20.0	14.3	2276	44 14 018 55	
FTDNA			FT	1	351	14	1	14.1	20.8	13.4	2076	44 M 018 5	
FTDNA			CT	2	19	1	1	14.0	19.4	23.4	1176	44 018 297	
FTDNA		sc	sc	SC 2	45	1	23.6	34.1	10.4	0	15	010	
FTDNA		50	ET	47	54	1	1	22.6	22.9	10.9	2600	15 010 107	
FTDNA		-	CT.	47	20	2	1	25.0	21.0	7.9	1900	15 010 865	
FTDNA		-	CT.	40	50	2	1,	23.1	24.1	10.6	2500	15 010 805	
FTDNA		-	ET	47	42	1	1	24.5	21.0	10.0	1900	15 010 55	
FTDNA			20	4/	42	1	20.7	23.1	51.9	7.5	1000	15 010 051	
FTDNA		SC	SU CT	SC.	251	14	30.7	47.0	47.6	10.2	4065	5010 010 F	
FTDNA			ET.	1	531	14	1	30.3	47.0	10.2	4005	50 10 10 16	
FTDNA			F1	-1	03	1	57	30.7	47.0	10.7	4105	50 M 010 16	
FTDNA		SC	SC	SC	3	14	5/	99.0	.00.2	42.5	51	01G	
FTDNA			FI	1	351	14	1	5/	99.3	43.5	11597	51 M 01G 5	
FTDNA			FI	-1	56	1	1	66.5	99.6	30.3	8/9/	51 M 01G 23	
FTDNA		-	FI	-1	40	1	1 107.5	65.4	/0.8	9.5	2700	51 016 746	
FTDNA		SC	SC	sc	3	1	107.5	115.7			90	01K	
FTDNA			FI	6	35	1	1	107.5	115.7	10.8	2500	90 M 01K 189	
FTDNA		-	FT	6	39	1	1	107.8	115.7	9.9	2400	90 M 01K 792	
FTDNA		1.6.0	FI	6	40	1	1	107.8	113.5	1.1	1800	90 01K 763	
FTDNA		SC	SC	SC	16	1	1/1.8	188.9			18	01R	
FTDNA			FT	52	43	1	1	173.7	183.6	9.2	2300	18 M 01R 581	
FTDNA		-	FI	52	39	1	1	1/3./	186.5	12	2900	18 M 01R 164	
FTDNA			FT	52	35	1	1,	173.7	188.9	13.4	3300	18 M 01R 81	
FTDNA		-	FT	52	39	1	1	171.8	185.7	11.7	3000	18 M 01R 165	
FTDNA			FT	52	39	1	1	173.7	183.6	9.2	2300	18 M 01R 806	
FTDNA		-	FT	52	54	1	1	173.7	187.9	12.6	3100	18 M 01R 46	
FTDNA			FT	52	51	1	1	173.7	185.3	10.9	2600	18 M 01R 114	
FTDNA		-	FT	52	44	1	1	173.7	186.5	12	2900	18 M 01R 141	
FTDNA		-	FT	52	39	1	1	173.7	181.7	7.7	1900	18 01R 833	
FTDNA		-	FT	52	37	1	1	173.7	186	11.6	2800	18 M 01R 178	
FTDNA			FT	52	38	1	1	175.6	186	9.6	2400	18 M 01R 863	
FTDNA			FT	52	49	1	1	173.7	186	11.6	2800	18 M 01R 120	
FTDNA			FT	52	58	1	1	173.9	186.5	11.4	2800	18 M 01R 100	
FTDNA		-	FT	50	40	2	1	171.8	186.5	12.5	3200	18 M 01R 73	
FTDNA		-	FT	52	47	1	1	173.7	187.1	12.5	3000	18 M 01R 58	
FTDNA			FT	52	63	1	1	173.7	186.5	12	2900	18 M 01R 91	
FTDNA		SC	SC	SC	3	1	176	186.5			54	OIR	
FIDNA			FT	15	37	1	1	177.7	186	7.9	1900	54 01R 993	
FIDNA			FT	15	40	1	1	176	186	9.2	2300	54 M 01R 742	
FIDNA			FT	15	48	1	1	176.2	186.5	9.3	2300	54 01R 398	
FIDNA		SC	SC	SC.	2	1	214.3	226			71	01V	
FIDNA			FT	-1	47	1	1	214.3	222.1	8.2	2100	71 01V 443	
FIDNA	Statistics of the local division in which the local division is not the local division of the local division is not the local division of the local divisi		FT	-1	61	1	1	214.8	226	9.8	3000	71 M 01V 263	
FIDNA	AutoSegment.clusters	SC	SC	SC	16	2	16.5	27			28	02B	
2	Autobegment-crusters	-	FT	4	52	1	2	16.5	24.8	9.8	2100	28 02B 327	
		5.1	10 C	AutoSegment-clusters AutoSegment-segment	ent-clusters	÷)					4	

- Large HTML charts difficult to open in browsers
- Use the Excel file to view the match clusters and segment clusters
- Cluster colors are represented in the first columns
- Segment cluster sheet format inspired by segmentology blog:

https://segmentology.org/

- Easy to pick up pile-ups
- Example: segment cluster 7 has 95 segments

Segment Cluster Information

Cluster 🔺 Segment clu	Segment 🔺	C 🔺 Sea	Start Search ft	Search fc	Segment representation	Search fc	Name A	cM A	To
▼ 6 (103 items)									
1	б	15	20004966	33965738		6144		43.3	138.6
1	6	15	20004966	33439811		5632		41.3	125.3
1	6	15	20004966	34079300		6272		43.7	122.7
1	6	15	20004966	33439811		5632		41.3	121.1
1	6	15	20004966	33871785		6016		42.7	104.4
1	6	15	20004966	29581108		3840		33.9	97.9
1	6	15	20004966	33439811		5632		41.3	95.4
1	6	15	20004966	33965738	_11111111111111111111111111111111111111	6144		43.3	94.4
1	6	15	20004966	33719535		5888		42.5	93.9
1	6	15	20004966	33871785		6016		42.7	93.3
1	6	15	20004966	27770160		3072		30.8	92.2
1	6	15	20004966	28328485		3456		31.9	90.7
1	6	15	20004966	33719535		5888		42.5	90.4
1	б	15	20004966	33439811		5632		41.3	89.9
1	6	15	20004966	33871785		6016		42.7	88.7
1	6	15	20004966	33582463	_0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	5760		41.9	88.2
1	6	15	20004966	27770160		3072		30.8	87.7
1	6	15	20004966	27770160		3072		30.8	87.6
1	6	15	20004966	33965738	-11111111111111111111111111111111111111	6144		43.3	87.2

- Easy to pick up pile-ups
- Example: segment cluster 7 has 95 segments
- All on chromosome 15

Chromosome	Starting position	Ending position	Genetic length (in cM)
chr9	38,293,483	72,605,261	8.15
chr8	10,428,647	13,469,693	7.96
chr21	16,344,186	19,375,168	6.91
chr10	44,555,093	53,240,188	7.58
chr22	16,051,881	25,095,451	20.82
chr2	85,304,243	99,558,013	6.53
chr1	118,434,520	153,401,108	9.95
chr15	20,060,673	25,145,260	10.46
chr17	77,186,666	78,417,478	5.66
chr15	27,115,823	30,295,750	9.29
chr17	59,518,083	64,970,531	6.23
chr2	132,695,025	141,442,636	9.16
chr16	19,393,068	24,031,556	6.18
chr2	192,352,906	198,110,229	5.04
Tot: 15 (γ)	119.92

doi:10.1371/journal.pgen.1004144.t003

Table from Li *et al* 2014

- Easy to pick up pile-ups
- Example: segment cluster 7 has 95 segments
- All on chromosome 15
- Overlaps with pile ups from Li *et al* 2014.

Chromosome 18.

- In addition to known pile up regions
- Prone to picking up "personal pileups"
- Visualization of pile ups for analysis
 - Using the min segment size

- Segment clustering based on "flat" segment files
 - No method to infer triangulation based on flat files
- Important to check if overlapping segments from clusters triangulate!
- GEDmatch is the exception
 - Triangulation files used

Start AutoSegment

https://members.geneticaffairs.com/autosegment

Hi ejblom,

Run an AutoSegment analysis for GEDmatch using the segment data and triangulated data (please note: this is available to Gedmatch Tier 1 subscribers only).

Gedmatch provides a downloadable file of all segments via their 'Segment Search' report. Please make sure to include enough matches, for instance 5000. In addition, enable the option "Prevent Hard Breaks"

GEDmatch also provides a triangulated segments which are used to verify identified overlapping segments.

Click here for a blog post from Patsy Coleman that describes her findings with AutoSegment and GEDmatch.

- Max cM
- Min cM
- Min overlapping segment size
- Min cluster size
- Remove known pileups
- Name
- Select files

Hybrid AutoSegment

- Combines FTDNA/23andme/MyHeritage and GEDmatch into one analysis
- Overlapping segments from four different DNA match databases
- Overlapping GEDmatch segments should triangulate
- Same principles as AutoSegment

Hybrid AutoSegment

Individual segment Cluster Information

The following table shows the 204 DNA segments for each of the 71 identified segment clusters.

	Download spreadsheet with segment clusters											
Cluster 🔺	Segmen 🔺	C 🔺	Start 🔺	Stop 🔺	Segment representation -	S 🔺	Name 🔺	DTC	cM 🔺	To 🔺	Pa 🔺	M 🔺
Search f	Segment cli	Sea	Search	Search		Sear	Search	Search	Max	Total	filter	filter
👻 11 (3 items	5)											
<u>38</u>	11	5	1	5050830		1329	25	23andme	12.5	40		
37	<mark>1</mark> 1	5	14782	4841505		3840	-	MyHeritage	12.2	91.5		
39	11	5	81437	5176672		493		GEDmatch	15.9	26.6		
🗢 50 (2 item:	s)											
-	50	10	100076444	116653136		8704	-	MyHeritage	15.9	30.8		
1	50	10	92994805	117029683		6600	(manual life)	FTDNA	24	351		м
🗢 60 (2 item:	s)											
1	60	7	100159726	123897167		4700		FTDNA	18.3	351		М
-	60	7	97601052	129663496		1561		GEDmatch	24.3	23.3		
	s)											
23	24	20	10752610	52308169		21504		MyHeritage	51	51		
23	24	20	17599087	44076324		11648	Conceptor 1	MyHeritage	24.5	32.1		
23	24	20	17770834	43374640		5400	-	FTDNA	23.6	53		М
23	24	20	17771604	44076324		11520	-	MyHeritage	24.2	30.2		
23	24	20	35335891	52308169		10112	-	MyHeritage	26.7	33.6		

- All segment clusters are listed in large table located in the main HTML file
- Some DNA matches are not in the chart
- Missing DNA matches could still be linked to segment clusters

FTDNA AutoSegment ICW

- Use shared match data to validate overlapping segments
- Only allow overlapping segments if the underlying DNA matches are a shared match

23andme AutoSegment

Half-identical segment Physical Position (bp): 5446119-

Genetic distance: 57.27 cM Number of SNPs: 4639

40102612

x C

A vs B/C/D

Segment Clusters directly linked to cluster 1

- Use DNA overlap feature on 23andme
- Only overlapping segments if DNA overlap is true

Conclusion AutoSegment

- AutoSegment groups DNA matches that share a common ancestor based on shared segments
- AutoSegment can be performed automatically for:
 - FamilyTreeDNA (using ICW data)
 - 23andme (using DNA overlap)
- AutoSegment can be performed using local files for:
 - FamilyTreeDNA, 23andme, MyHeritage and GEDmatch
- AutoSegment available for tier 1 users on GEDmatch
 - Ability to use the segments from a single chromosome

Outline AutoTree

	4 ///
~	<u>+</u> ///
	<u>+</u> //
	<u>4</u> ///

- what is AutoTree
- AutoTree concepts
- visualization
- common ancestors
- Y-DNA and mtDNA
- starting AutoTree

AutoTree

John Samuel Freeman (1813 Chocowinity - 1897 Chocowinity, Beaufort County, North Carolina, USA) m Anis Harding (1822 Chocowinity - 1862 Chocowinity, Beaufort County, North Carolina, USA)

- AutoTree uses shared trees of DNA matches to find common ancestors (MRCAs) and can reconstruct a (partial) tree.
- Based on genealogical trees
- AutoTree is available on Genetic Affairs for FTDNA profiles (and on GEDmatch for tier 1 users)

- AutoTree is performed using the trees of members of clusters obtained from an AutoCluster analysis.
- Reconstructed trees aid in the identification of the common ancestor of the remaining DNA matches in a cluster.
- Work for persons with unknown parentage to their birth families (for instance adoptees or donor-conceived persons) as well as people that have linked their DNA profile to a tree.

Concepts of AutoTree

- Examines trees of matches to identify common ancestors and reconstruct a tree
- Employs three steps:
- 1. Surname clustering
- 2. First name clustering
- 3. Birth/Death year clustering

Visualization of trees

John Samuel Freeman (1813 Chocowinity - 1897 Chocowinity, Beaufort County, North Carolina, USA) m Anis Harding (1822 Chocowinity - 1862 Chocowinity, Beaufort County, North Carolina, USA)

- Reconstructed trees are visualized for each common ancestor and linked DNA matches
- DNA matches visualized using a color gradient
- Tree persons from your own tree are also visualized (if available)

Visualization in chart

Common ancestors

Earl Eugene Cook 1909 - 1981 Lillie N Sutton 1909 -John William Cook 1870 - 1945 Berry Anderson Rose 1847 - 1939 Belle Zona Rose 1879 - 1976

Matches in cluster 4

- 295.5 cM second cousin
- 194.5 cM third cousin
raub - 182.3 cM third cousin
cM third cousin
' - 152.4 cM third cousin
- 134.6 cM third cousin
134 cM third cousin
3 cM third cousin
3 cM third cousin
101.8 cM third cousin
n - 92.2 cM third cousin

- Common locations using clustering of birth locations
- Integration within the AutoCluster chart (using Christmas trees and overlay information)

Common ancestors

- Overlay of common ancestors linked to DNA matches projected on your own tree
- Shows the clusters where the DNA matches originate from
- Clickable links for each common ancestor
- Show DNA matches that share the common ancestor

- Allows a quick analysis of shared common ancestors in trees of Y-DNA or mtDNA matches
- Comparison with trees from autosomal matches
- Male/female visualizations to improve analysis
- Available for FTDNA

Extend

clusters

Min

cluster

size

Perform

AutoCluster analysis

perci 👻

a max of

400 . ~

less than

30 cl 🗸

with the

match

10 cl ~

Paste here the FTDNA identifiers in case of an ID based

clustering

- Available for FTDNA profiles
- Select FTDNA profile of interest
- Select AutoTree option
- Set parameters, and start analysis
- Retrieve results by e-mail or download results from site

Outline AutoKinship

- What is AutoKinship
- AutoKinship concepts
- visualization
- AutoKinship & 23andme
- AutoKinship & MyHeritage
- Conclusion AutoTree & AutoKinship

Based on AutoCluster

- AutoCluster provides a limited perspective regarding how matches are related
- Matches from a cluster likely share a common ancestor but how are they related?
- Are there different MRCAs between the matches?

Reconstructed AutoKinship tree 8496 with probability 7.871931003146019E-30 and 12 persons

- AutoKinship is performed using members of clusters obtained from an AutoCluster analysis.
- No genealogical trees required
- Predicts family trees based on the amount of DNA your DNA matches share with you and each other.

Reconstructed AutoKinship tree 8496 with probability 7.871931003146019E-30 and 12 persons

- Reconstructed trees provide hypotheses how matches are related to each other
- Work for persons with unknown parentage to their birth families (for instance adoptees or donor-conceived persons).
- Works for MyHeritage, 23andme and GEDmatch data.

AutoKinship example

https://dna-sci.com/tools/brit-cim/

- Aunt Mia is the tested person
- Liam and Olivia shared 2905 cM and are predicted siblings
- They share 1548/1730 cM with Aunt Mia

AutoKinship example

- Ava and Charlotte share 3452 cM, parent child relationship. Who is the child?
- Aunt Mia shares 397 cM with Ava, and 110 cM with Charlotte
- Ava is the parent, most likely a 1C1R

AutoKinship example

https://dna-sci.com/tools/brit-cim/

- Aunt Mia and Emma share 435 cM, potential 1C1R?
- Emma and Ava share 1084 cM, so most likely a 1C
- The 1C prediction of Emma and Ava fits nicely with the 1C1R prediction of Emma with Aunt Mia.

AutoKinship concepts

Reconstructed AutoKinship tree 8496 with probability 7.871931003146019E-30 and 12 persons

Brit ciM | DNA Science

Discover the most probable relationship types for your DNA matches

These probabilities come from the most accurate shared DNA data available. This is the first and only relationship prediction tool to take into account differences between maternal and paternal relationships and show that close genealogical relationships considered to be in the same group are actually very different. Please feel free to share this tool.

Enter your shared cM or % in the applicable box below

1084		
AncestryDNA (Default is HIR)	23andMe (Default is IBD)	Percentage (Default is IBD)
HIR	□ IBD	
SUBMIT		

- Examines many possible relationships, similar to WATO but from the perspective of all matches
- Generated trees are sorted based on the combined probabilities
- Employs probabilities from <u>https://dna-sci.com</u>, created by Brit Nicholson

AutoKinship & 23andme

Perform AutoCluster analysis for 23andme and profile EJ Blom

Selecting a min threshold of **30 cM (or lower)** will automatically result in the usage of a more powerful server. This is to ensure that there is enough memory to create all necessary files.

- Available for 23andme profiles
- Select 23andme profile of interest
- Select AutoKinship option
- Set parameters, and start analysis
- Retrieve results by e-mail or download results from site

Running AutoKinship for MyHeritage

AutoSave 💽 🖪 🤌 🕬	S = ⇒ input for AutoKinship - Excel €	export - temp_
File Home Insert P	age Layout Formulas Data Re	eview Viev
Cut Calib	ri • 11 • A^ A* = =	= %
Paste Copy ~ B		= = =
V Format Painter Clinboard Su	Fant Di	Aliqu
		Aligi
633 * : X V	Jx	0
A 1	B	C
	shared match B	1/6./
3 DNA	shared match C	249.1
4 match	shared match D	1083.6
6 Inducti	shared match E	86.1
	1	
8	Design of the second second	
9	shared match A	
DNA	shared match C	-
2	shared match C	
match	shared match D	- 2
15 D	•	
L6 D	Press and a second	
		1995
	shared match A	-
20	shared match B	1000
match C	shared match D	
22 matches ch	ared matches cluster?	
1 / matches shi	ared_matches cluster2 icw_cluster.	•

- (semi) manual data retrieval using 2 CSV files
- Requires matches file, 2 or 3 columns
 - 1st column: match name
 - 2nd column: amount of shared cM
 - 3rd column: generation (optional)
- Requires shared matches file, 3 columns
 - 1st column: match name
 - 2nd column: shared match name
 - 3rd column: amount of shared DNA between shared matches

- Run AutoClusters analysis on MyHeritage
- Save and unzip ZIP file from email
- Examine report and select cluster of interest
- Upload HTML to Genetic Affairs
- Retrieve Excel spreadsheet with matches & shared matches per cluster

- Next, we need to obtain how much DNA our shared matches share.
- For each match
- There are a number of shared matches
- This is the amount of DNA I am sharing with the shared match
- My match is sharing this amount of DNA with each shared match
- The shared DNA information in this
 column needs to be copied into the Excel

1	A	B	С
1	f.	Constitute from the Spinster	924
2	I		2433
3	f.		162
4	I		2657
5	ſ		36
6	I		908
7	f		1853
8	I		40
9	f		1968
10	I		1304
11	f		959
12	I		133
13	f		757
14	I		908
15	f		349
16	I		36
17	f .		256
18	J		976
19	1	The second se	114
20	J.		2518
21	1		35
22	1		2434
23	1		959
24	1-b	Million	1574
	matches sh	ared_matches cluster2 icw_cluster2	()

- For each match and shared match combination
- Find back how much DNA they share
- Fill it in the last column
- Quite time consuming!

A Match name 👘 cM 👘 Ge 👘	Name of tested person	DNA Match name Shared match	* cM *
	John Smit		
	Max trees to report 0 Max difference in Set generational level tested		_
	generations person		
	10 V 2 generations V Do not set generational le V		
	Select cM probabilities 🖲		
	MyHeritage 🗸 🗸		
	Load existing WATO tree 0		
	Bestand kiezen Geen bestand gekozen		
	Perform AutoKinship analysis		
	Bulk import		
	0		
	Import Import		
	matches matches		
-			
	Click for a MyHeritage tutorial		
	Restand kiezen Geen hestand gekozen		
	Bulk import DNA matches		
	Buik Import DNA matches		
Paste your DNA			
		G	
			1
			L
	OK Cancel		L
			L

- Visit Genetic Affairs: <u>https://members.geneticaffairs.com/</u> <u>autokinship</u>
- Use bulk import to paste matches & shared matches
- (optional) set generational level of tested person
- Provide name, select cM probabilities and start analysis

Reconstructed AutoKinship tree 15419 with probability 1.2414841426793725E-20 and 12 persons

- Parts of the predicted tree can be known
- Make a tree in WATO (<u>https://dnapainter.com/t</u> <u>ools/probability</u>) and load it into AutoKinship
Conclusion AutoKinship & AutoTree

Reconstructed AutoKinship tree 13146 with probability 1.9273928553599712E-14 and 10 persons

- AutoTree reconstructs genealogical trees based on trees shared by (FTDNA) DNA matches
 - AutoTree integration for AutoKinship combines best of both worlds: genealogical trees and reconstructed trees based on DNA
- AutoSegment provides shared segments for AutoKinship branches
- AutoKinship reconstructs trees based on shared DNA between shared matches
 - Automatically for 23andme matches
 - Semi automatically for MyHeritage
 - Will be available on GEDmatch (tier 1)

Additional resources

https://patriciacolemangenealogy.com/

https://dna-explained.com/category/genetic-affairs/

www.facebook.com/groups/GeneticAffairs www.geneticaffairs.com

ťΠ

https://twitter.com/AffairsGenetic